Antiderivatives Formula Sheet

1 Basic Antiderivatives

- If f(x) = a then F(x) = ax + C
- If $f(x) = x^a$ then $F(x) = \frac{x^{a+1}}{a+1} + C$ (unless a = -1)
- If $f(x) = \frac{1}{x}$ then $F(x) = \ln(x) + C$
- If $f(x) = e^x$ then $F(x) = e^x + C$
- If $f(x) = \cos(x)$ then $F(x) = \sin(x) + C$
- If $f(x) = \sin(x)$ then $F(x) = -\cos(x) + C$
- If $f(x) = \sec^2(x)$ then $F(x) = \tan(x) + C$

2 Antiderivatives Rules

If the antiderivative of f(x) is F(x), and the antiderivative of g(x) is G(x) then

- The antiderivative of af(x) + bg(x) is aF(x) + bG(x) (for any a, b)
- The antiderivative of f(ax + b) is $\frac{1}{a}F(ax + b)$

As a result:

- If $f(x) = (dx+b)^a$ then $F(x) = \frac{1}{d} \frac{(dx+b)^{a+1}}{a+1} + C$ (unless a = -1)
- If $f(x) = \frac{1}{ax+b}$ then $F(x) = \frac{1}{a}\ln(ax+b) + C$
- If $f(x) = e^{ax+b}$ then $F(x) = \frac{1}{a}e^{ax+b} + C$
- If $f(x) = \cos(ax+b)$ then $F(x) = \frac{1}{a}\sin(ax+b) + C$
- If $f(x) = \sin(ax+b)$ then $F(x) = -\frac{1}{a}\cos(ax+b) + C$
- If $f(x) = \sec^2(ax+b)$ then $F(x) = \frac{1}{a}\tan(ax+b) + C$

3 Intermediate Rules

- The antiderivative of $\frac{f'(x)}{f(x)}$ is $\ln[f(x)] + C$
- The antiderivative of $f'(x)f^a(x)$ is $\frac{f^{a+1}(x)}{a+1}$. The following are useful "special cases" of this rule:
 - The antiderivative of f'(x)f(x) is $\frac{1}{2}f^2(x)$
 - The antiderivative of $\frac{f'(x)}{\sqrt{f(x)}}$ is $2\sqrt{f(x)}$
 - The antiderivative of $\frac{f'(x)}{f^2(x)}$ is $-\frac{1}{f(x)}$
- The antiderivative of $f'(x)e^{f(x)}$ is $e^{f(x)} + C$
- The antiderivative of $f'(x)\cos[f(x)]$ is $\sin[f(x)] + C$
- The antiderivative of $f'(x) \sin[f(x)]$ is $-\cos[f(x)] + C$