Logarithm Formulas

Expansion/Contraction Properties of Logarithms

These rules are used to write a single complicated logarithm as several simpler logarithms (called "expanding") or several simple logarithms as a single complicated logarithm (called "contracting"). Notice that these rules work for any base.

$$
\begin{aligned}
\log _{a}(x y) & =\log _{a}(x)+\log _{a}(y) & & \text { (multiplication inside can be turned into addition outside, and vice versa.) } \\
\log _{a}\left(\frac{x}{y}\right) & =\log _{a}(x)-\log _{a}(y) & & \text { (division inside can be turned into subtraction outside, and vice versa) } \\
\log _{a}\left(x^{n}\right) & =n \cdot \log _{a}(x) & & \text { (an exponent on everything inside can be moved out front, and vice versa) }
\end{aligned}
$$

Change of Base Formula

This formula is used to change a less helpful base to a more helpful one (generally base 10 or base e, since these appear on your calculator, but you can change to any base). In the formula below, a is the current base of your logarithm, and b is the base you would like to have instead.

$$
\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}
$$

Cancellation Properties of Logarithms
These rules are used to solve for x when x is an exponent or is trapped inside a logarithm. Notice that these rules work for any base.

$$
\begin{aligned}
\log _{a}\left(a^{x}\right) & =x & & (\text { this allows you to solve for } x \text { whenever it is in the exponent) } \\
a^{\log _{a}(x)} & =x & & \text { (this allows you to solve for } x \text { whenever it is inside a logarithm) }
\end{aligned}
$$

$\underline{\text { Logarithm Problems }}$

1. Expand each expression (use expansion properties to expand as much as possible).
a. $\quad \log _{3}(x y)$

Solution:

$$
\log _{3}(x y)=\log _{3}(x)+\log _{3}(y) \quad \text { (multiplication rule) }
$$

b. $\quad \log _{7}\left(\frac{x}{y}\right)$

Solution:

$$
\log _{7}\left(\frac{x}{y}\right)=\log _{7}(x)-\log _{7}(y) \quad \text { (division rule) }
$$

c. $\ln \left(x^{5}\right)$

Solution:

$$
\ln \left(x^{5}\right)=5 \ln (x) \quad \text { (exponent rule) }
$$

